(0) Obligation:
Clauses:
p(a, b).
p(b, c).
tc(X, X).
tc(X, Y) :- ','(p(X, Z), tc(Z, Y)).
Query: tc(g,a)
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph ICLP10.
(2) Obligation:
Clauses:
tcA(c).
tcB(b).
tcB(T15) :- tcA(T15).
tcC(T4, T4).
tcC(a, T9) :- tcB(T9).
tcC(b, T9) :- tcA(T9).
tcC(a, T28) :- tcB(T28).
tcC(b, T28) :- tcA(T28).
Query: tcC(g,a)
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
tcC_in: (b,f)
tcB_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
tcC_in_ga(T4, T4) → tcC_out_ga(T4, T4)
tcC_in_ga(a, T9) → U2_ga(T9, tcB_in_a(T9))
tcB_in_a(b) → tcB_out_a(b)
tcB_in_a(T15) → U1_a(T15, tcA_in_a(T15))
tcA_in_a(c) → tcA_out_a(c)
U1_a(T15, tcA_out_a(T15)) → tcB_out_a(T15)
U2_ga(T9, tcB_out_a(T9)) → tcC_out_ga(a, T9)
tcC_in_ga(b, T9) → U3_ga(T9, tcA_in_a(T9))
U3_ga(T9, tcA_out_a(T9)) → tcC_out_ga(b, T9)
tcC_in_ga(a, T28) → U4_ga(T28, tcB_in_a(T28))
U4_ga(T28, tcB_out_a(T28)) → tcC_out_ga(a, T28)
tcC_in_ga(b, T28) → U5_ga(T28, tcA_in_a(T28))
U5_ga(T28, tcA_out_a(T28)) → tcC_out_ga(b, T28)
The argument filtering Pi contains the following mapping:
tcC_in_ga(
x1,
x2) =
tcC_in_ga(
x1)
tcC_out_ga(
x1,
x2) =
tcC_out_ga(
x2)
a =
a
U2_ga(
x1,
x2) =
U2_ga(
x2)
tcB_in_a(
x1) =
tcB_in_a
tcB_out_a(
x1) =
tcB_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
tcA_in_a(
x1) =
tcA_in_a
tcA_out_a(
x1) =
tcA_out_a(
x1)
b =
b
U3_ga(
x1,
x2) =
U3_ga(
x2)
U4_ga(
x1,
x2) =
U4_ga(
x2)
U5_ga(
x1,
x2) =
U5_ga(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
tcC_in_ga(T4, T4) → tcC_out_ga(T4, T4)
tcC_in_ga(a, T9) → U2_ga(T9, tcB_in_a(T9))
tcB_in_a(b) → tcB_out_a(b)
tcB_in_a(T15) → U1_a(T15, tcA_in_a(T15))
tcA_in_a(c) → tcA_out_a(c)
U1_a(T15, tcA_out_a(T15)) → tcB_out_a(T15)
U2_ga(T9, tcB_out_a(T9)) → tcC_out_ga(a, T9)
tcC_in_ga(b, T9) → U3_ga(T9, tcA_in_a(T9))
U3_ga(T9, tcA_out_a(T9)) → tcC_out_ga(b, T9)
tcC_in_ga(a, T28) → U4_ga(T28, tcB_in_a(T28))
U4_ga(T28, tcB_out_a(T28)) → tcC_out_ga(a, T28)
tcC_in_ga(b, T28) → U5_ga(T28, tcA_in_a(T28))
U5_ga(T28, tcA_out_a(T28)) → tcC_out_ga(b, T28)
The argument filtering Pi contains the following mapping:
tcC_in_ga(
x1,
x2) =
tcC_in_ga(
x1)
tcC_out_ga(
x1,
x2) =
tcC_out_ga(
x2)
a =
a
U2_ga(
x1,
x2) =
U2_ga(
x2)
tcB_in_a(
x1) =
tcB_in_a
tcB_out_a(
x1) =
tcB_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
tcA_in_a(
x1) =
tcA_in_a
tcA_out_a(
x1) =
tcA_out_a(
x1)
b =
b
U3_ga(
x1,
x2) =
U3_ga(
x2)
U4_ga(
x1,
x2) =
U4_ga(
x2)
U5_ga(
x1,
x2) =
U5_ga(
x2)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
TCC_IN_GA(a, T9) → U2_GA(T9, tcB_in_a(T9))
TCC_IN_GA(a, T9) → TCB_IN_A(T9)
TCB_IN_A(T15) → U1_A(T15, tcA_in_a(T15))
TCB_IN_A(T15) → TCA_IN_A(T15)
TCC_IN_GA(b, T9) → U3_GA(T9, tcA_in_a(T9))
TCC_IN_GA(b, T9) → TCA_IN_A(T9)
TCC_IN_GA(a, T28) → U4_GA(T28, tcB_in_a(T28))
TCC_IN_GA(b, T28) → U5_GA(T28, tcA_in_a(T28))
The TRS R consists of the following rules:
tcC_in_ga(T4, T4) → tcC_out_ga(T4, T4)
tcC_in_ga(a, T9) → U2_ga(T9, tcB_in_a(T9))
tcB_in_a(b) → tcB_out_a(b)
tcB_in_a(T15) → U1_a(T15, tcA_in_a(T15))
tcA_in_a(c) → tcA_out_a(c)
U1_a(T15, tcA_out_a(T15)) → tcB_out_a(T15)
U2_ga(T9, tcB_out_a(T9)) → tcC_out_ga(a, T9)
tcC_in_ga(b, T9) → U3_ga(T9, tcA_in_a(T9))
U3_ga(T9, tcA_out_a(T9)) → tcC_out_ga(b, T9)
tcC_in_ga(a, T28) → U4_ga(T28, tcB_in_a(T28))
U4_ga(T28, tcB_out_a(T28)) → tcC_out_ga(a, T28)
tcC_in_ga(b, T28) → U5_ga(T28, tcA_in_a(T28))
U5_ga(T28, tcA_out_a(T28)) → tcC_out_ga(b, T28)
The argument filtering Pi contains the following mapping:
tcC_in_ga(
x1,
x2) =
tcC_in_ga(
x1)
tcC_out_ga(
x1,
x2) =
tcC_out_ga(
x2)
a =
a
U2_ga(
x1,
x2) =
U2_ga(
x2)
tcB_in_a(
x1) =
tcB_in_a
tcB_out_a(
x1) =
tcB_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
tcA_in_a(
x1) =
tcA_in_a
tcA_out_a(
x1) =
tcA_out_a(
x1)
b =
b
U3_ga(
x1,
x2) =
U3_ga(
x2)
U4_ga(
x1,
x2) =
U4_ga(
x2)
U5_ga(
x1,
x2) =
U5_ga(
x2)
TCC_IN_GA(
x1,
x2) =
TCC_IN_GA(
x1)
U2_GA(
x1,
x2) =
U2_GA(
x2)
TCB_IN_A(
x1) =
TCB_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
TCA_IN_A(
x1) =
TCA_IN_A
U3_GA(
x1,
x2) =
U3_GA(
x2)
U4_GA(
x1,
x2) =
U4_GA(
x2)
U5_GA(
x1,
x2) =
U5_GA(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
TCC_IN_GA(a, T9) → U2_GA(T9, tcB_in_a(T9))
TCC_IN_GA(a, T9) → TCB_IN_A(T9)
TCB_IN_A(T15) → U1_A(T15, tcA_in_a(T15))
TCB_IN_A(T15) → TCA_IN_A(T15)
TCC_IN_GA(b, T9) → U3_GA(T9, tcA_in_a(T9))
TCC_IN_GA(b, T9) → TCA_IN_A(T9)
TCC_IN_GA(a, T28) → U4_GA(T28, tcB_in_a(T28))
TCC_IN_GA(b, T28) → U5_GA(T28, tcA_in_a(T28))
The TRS R consists of the following rules:
tcC_in_ga(T4, T4) → tcC_out_ga(T4, T4)
tcC_in_ga(a, T9) → U2_ga(T9, tcB_in_a(T9))
tcB_in_a(b) → tcB_out_a(b)
tcB_in_a(T15) → U1_a(T15, tcA_in_a(T15))
tcA_in_a(c) → tcA_out_a(c)
U1_a(T15, tcA_out_a(T15)) → tcB_out_a(T15)
U2_ga(T9, tcB_out_a(T9)) → tcC_out_ga(a, T9)
tcC_in_ga(b, T9) → U3_ga(T9, tcA_in_a(T9))
U3_ga(T9, tcA_out_a(T9)) → tcC_out_ga(b, T9)
tcC_in_ga(a, T28) → U4_ga(T28, tcB_in_a(T28))
U4_ga(T28, tcB_out_a(T28)) → tcC_out_ga(a, T28)
tcC_in_ga(b, T28) → U5_ga(T28, tcA_in_a(T28))
U5_ga(T28, tcA_out_a(T28)) → tcC_out_ga(b, T28)
The argument filtering Pi contains the following mapping:
tcC_in_ga(
x1,
x2) =
tcC_in_ga(
x1)
tcC_out_ga(
x1,
x2) =
tcC_out_ga(
x2)
a =
a
U2_ga(
x1,
x2) =
U2_ga(
x2)
tcB_in_a(
x1) =
tcB_in_a
tcB_out_a(
x1) =
tcB_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
tcA_in_a(
x1) =
tcA_in_a
tcA_out_a(
x1) =
tcA_out_a(
x1)
b =
b
U3_ga(
x1,
x2) =
U3_ga(
x2)
U4_ga(
x1,
x2) =
U4_ga(
x2)
U5_ga(
x1,
x2) =
U5_ga(
x2)
TCC_IN_GA(
x1,
x2) =
TCC_IN_GA(
x1)
U2_GA(
x1,
x2) =
U2_GA(
x2)
TCB_IN_A(
x1) =
TCB_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
TCA_IN_A(
x1) =
TCA_IN_A
U3_GA(
x1,
x2) =
U3_GA(
x2)
U4_GA(
x1,
x2) =
U4_GA(
x2)
U5_GA(
x1,
x2) =
U5_GA(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 0 SCCs with 8 less nodes.
(8) TRUE